Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(8): 1376-1387, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36972568

RESUMO

Adenosine deaminases acting on RNA (ADARs) are RNA editing enzymes that catalyze the hydrolytic deamination of adenosine (A) to inosine (I) in dsRNA. In humans, two catalytically active ADARs, ADAR1 and ADAR2, perform this A-to-I editing event. The growing field of nucleotide base editing has highlighted ADARs as promising therapeutic agents while multiple studies have also identified ADAR1's role in cancer progression. However, the potential for site-directed RNA editing as well as the rational design of inhibitors is being hindered by the lack of detailed molecular understanding of RNA recognition by ADAR1. Here, we designed short RNA duplexes containing the nucleoside analog, 8-azanebularine (8-azaN), to gain insight into molecular recognition by the human ADAR1 catalytic domain. From gel shift and in vitro deamination experiments, we validate ADAR1 catalytic domain's duplex secondary structure requirement and present a minimum duplex length for binding (14 bp, with 5 bp 5' and 8 bp 3' to editing site). These findings concur with predicted RNA-binding contacts from a previous structural model of the ADAR1 catalytic domain. Finally, we establish that neither 8-azaN as a free nucleoside nor a ssRNA bearing 8-azaN inhibits ADAR1 and demonstrate that the 8-azaN-modified RNA duplexes selectively inhibit ADAR1 and not the closely related ADAR2 enzyme.


Assuntos
Ribonucleosídeos , Humanos , Nucleosídeos de Purina , RNA de Cadeia Dupla , Adenosina , Adenosina Desaminase/metabolismo
2.
Bioorg Med Chem ; 29: 115894, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290908

RESUMO

MicroRNAs (miRNAs) are short noncoding RNAs that play a fundamental role in gene regulation. Deregulation of miRNA expression has a strong correlation with disease and antisense oligonucleotides that bind and inhibit miRNAs associated with disease have therapeutic potential. Current research on the chemical modification of anti-miRNA oligonucleotides (anti-miRs) is focused on alterations of the phosphodiester-ribose backbone to improve nuclease resistance and binding affinity to miRNA strands. Here we describe a structure-guided approach for modification of the 3'-end of anti-miRs by screening for modifications compatible with a nucleotide-binding pocket present on human Argonaute2 (hAgo2). We computationally screened a library of 190 triazole-modified nucleoside analogs for complementarity to the t1A-binding pocket of hAgo2. Seventeen top scoring triazoles were then incorporated into the 3' end of anti-miR21 and potency was evaluated for each in a cell-based assay for anti-miR activity. Four triazole-modified anti-miRs showed higher potency than anti-miR21 bearing a 3' adenosine. In particular, a triazole-modified nucleoside bearing an ester substituent imparted a nine-fold and five-fold increase in activity for both anti-miR21 and anti-miR122 at 300 and 5 nM, respectively. The ester group was shown to be critical as a similar carboxylic acid and amide were inactive. Furthermore, anti-miR 3' end modification with triazole-modified nucleoside analogs improved resistance to snake venom phosphodiesterase, a 3'-exonuclease. Thus, the modifications described here are good candidates for improvement of anti-miR activity.


Assuntos
Proteínas Argonautas/metabolismo , Ésteres/química , MicroRNAs/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos/química , Triazóis/química , Linhagem Celular , Química Click , Avaliação Pré-Clínica de Medicamentos , Exonucleases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/metabolismo , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
3.
Microbiome ; 6(1): 201, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409177

RESUMO

BACKGROUND: Travelers' diarrhea (TD) is often caused by enterotoxigenic Escherichia coli, enteroaggregative E. coli, other bacterial pathogens, Norovirus, and occasionally parasites. Nevertheless, standard diagnostic methods fail to identify pathogens in more than 40% of TD patients. It is predicted that new pathogens may be causative agents of the disease. RESULTS: We performed a comprehensive amplicon and whole genome shotgun (WGS) metagenomic study of the fecal microbiomes from 23 TD patients and seven healthy travelers, all of which were negative for the known etiologic agents of TD based on standard microbiological and immunological assays. Abnormal and diverse taxonomic profiles in TD samples were revealed. WGS reads were assembled and the resulting contigs were visualized using multiple query types. A semi-manual workflow was applied to isolate independent genomes from metagenomic pools. A total of 565 genome bins were extracted, 320 of which were complete enough to be characterized as cellular genomes; 160 were viral genomes. We made predictions of the etiology of disease for many of the individual subjects based on the properties and features of the recovered genomes. Multiple patients with low-diversity metagenomes were predominated by one to several E. coli strains. Functional annotation allowed prediction of pathogenic type in many cases. Five patients were co-infected with E. coli and other members of Enterobacteriaceae, including Enterobacter, Klebsiella, and Citrobacter; these may represent blooms of organisms that appear following secretory diarrhea. New "dark matter" microbes were observed in multiple samples. In one, we identified a novel TM7 genome that phylogenetically clustered with a sludge isolate; it carries genes encoding potential virulence factors. In multiple samples, we observed high proportions of putative novel viral genomes, some of which form clusters with the ubiquitous gut virus, crAssphage. The total relative abundance of viruses was significantly higher in healthy travelers versus TD patients. CONCLUSION: Our study highlights the strength of assembly-based metagenomics, especially the manually curated, visualization-assisted binning of contigs, in resolving unusual and under-characterized pathogenic profiles of human-associated microbiomes. Results show that TD may be polymicrobial, with multiple novel cellular and viral strains as potential players in the diarrheal disease.


Assuntos
Diarreia/microbiologia , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Genoma Bacteriano/genética , Genoma Viral/genética , Doença Relacionada a Viagens , Citrobacter/classificação , Citrobacter/genética , Citrobacter/isolamento & purificação , Diarreia/diagnóstico , Enterobacter/classificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Escherichia coli Enterotoxigênica/classificação , Humanos , Klebsiella/classificação , Klebsiella/genética , Klebsiella/isolamento & purificação , Metagenoma , Metagenômica/métodos , Anotação de Sequência Molecular , Norovirus/genética , Norovirus/isolamento & purificação , Análise de Sequência de DNA
4.
Nat Commun ; 9(1): 2017, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789621

RESUMO

Ocean-derived, airborne microbes play important roles in Earth's climate system and human health, yet little is known about factors controlling their transfer from the ocean to the atmosphere. Here, we study microbiomes of isolated sea spray aerosol (SSA) collected in a unique ocean-atmosphere facility and demonstrate taxon-specific aerosolization of bacteria and viruses. These trends are conserved within taxonomic orders and classes, and temporal variation in aerosolization is similarly shared by related taxa. We observe enhanced transfer into SSA of Actinobacteria, certain Gammaproteobacteria, and lipid-enveloped viruses; conversely, Flavobacteriia, some Alphaproteobacteria, and Caudovirales are generally under-represented in SSA. Viruses do not transfer to SSA as efficiently as bacteria. The enrichment of mycolic acid-coated Corynebacteriales and lipid-enveloped viruses (inferred from genomic comparisons) suggests that hydrophobic properties increase transport to the sea surface and SSA. Our results identify taxa relevant to atmospheric processes and a framework to further elucidate aerosolization mechanisms influencing microbial and viral transport pathways.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , DNA Viral/genética , Filogenia , Fitoplâncton/genética , Vírus/genética , Aerossóis , Atmosfera , Bactérias/química , Bactérias/classificação , Código de Barras de DNA Taxonômico , Ecossistema , Interações Hidrofóbicas e Hidrofílicas , Fitoplâncton/química , Fitoplâncton/classificação , Água do Mar/microbiologia , Água do Mar/virologia , Vírus/química , Vírus/classificação , Volatilização
5.
J Am Chem Soc ; 136(50): 17378-81, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25468257

RESUMO

We present a spherical micelle generated in a three-step sequence in which a farnesyl-pantetheine conjugate is phosphorylated, adenylated, and phosphorylated once more to generate a farnesyl-CoA amphiphile that self-assembles into spherical micelles. A sphere-to-fibril morphological switch is achieved by enzymatically transferring the farnesyl group of the farnesyl-CoA micelle onto a peptide via phosphopantetheinyl transferase to generate a peptide amphiphile. Each step in the sequence is followed with characterization by HPLC, MS, TEM, and DLS. This system offers an entry into cofactor-mediated peptide decoration by extending the principles of bioresponsive polymeric materials to sequential enzyme cascades.


Assuntos
Bactérias/enzimologia , Nanoestruturas/química , Farneseno Álcool/química , Micelas , Estrutura Molecular , Panteteína/química
6.
Chem Sci ; 5(3): 1179-1186, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26998215

RESUMO

Evaluation of new acyl carrier protein hydrolase (AcpH, EC 3.1.4.14) homologs from proteobacteria and cyanobacteria reveals significant variation in substrate selectivity and kinetic parameters for phosphopantetheine hydrolysis from carrier proteins. Evaluation with carrier proteins from both primary and secondary metabolic pathways reveals an overall preference for acyl carrier protein (ACP) substrates from type II fatty acid synthases, as well as variable activity for polyketide synthase ACPs and peptidyl carrier proteins (PCP) from non-ribosomal peptide synthases. We also demonstrate the kinetic parameters of these homologs for AcpP and the 11-mer peptide substrate YbbR. These findings enable the fully reversible labeling of all three classes of natural product synthase carrier proteins as well as full and minimal fusion protein constructs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...